
PARALLEL & DISTRIBUTED PROCESSING
CSE-313

Md. Masudur Rahman, Dept. of CSE, UGV 1

PARALLEL & DISTRIBUTED
PROCESSING

Course Code: CSE-313 Credits: 03

CIE Marks: 90

Exam Hours: 03 SEE Marks: 60

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to…

CLO Description

CLO 1
Demonstrate an understanding of parallel and distributed computing concepts, including their necessity,

advantages, and architectural design.

CLO 2 Apply knowledge of Flynn’s taxonomy to classify parallel and distributed systems and their applications.

CLO 3
Analyze and solve computational problems using parallel computing techniques to improve performance and

efficiency.

CLO 4
Develop programs using distributed computing models such as MapReduce for handling large-scale data

processing.

CLO 5 Design and evaluate distributed databases with a focus on fragmentation, replication, and allocation strategies.

CLO 6 Assess the performance, fault tolerance, and scalability of distributed systems and suggest optimizations.

CLO 7
Implement synchronization techniques to manage shared resources and ensure consistency in distributed

environments.

CLO 8
Explore the role of pipelining and instruction-level parallelism in improving the performance of parallel

processors.

SUMMARY OF COURSE CONTENT

•Recommended Books:

1. Parallel Programming: Techniques and Applications Using Networked Workstations and GPUs by Michael J. Quinn.

2. Distributed Systems: Principles and Paradigms by Andrew S. Tanenbaum and Maarten Van Steen.

3. Introduction to Parallel Computing by Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

Sl. Course Content HRs CLOs

1 Introduction to Parallel and Distributed Computing 4 CLO 1, CLO 2

2 Flynn’s Taxonomy and Parallel Architectures 3 CLO 2, CLO 3

3 Parallel Programming Models and Techniques 6 CLO 3, CLO 4

4 Distributed Systems: Concepts and Architectures 5 CLO 1, CLO 5

5 Synchronization and Resource Management 4 CLO 6, CLO 7

6 Pipelining and Instruction-Level Parallelism 3 CLO 8

7 MapReduce and Big Data Processing 4 CLO 4, CLO 6

8
Distributed Databases: Fragmentation, Replication, and

Allocation
5 CLO 5, CLO 6

9 Fault Tolerance and Scalability in Distributed Systems 4 CLO 6

10 Practical Applications and Case Studies 2
CLO 4, CLO 6,

CLO 7

Md. Masudur Rahman, Dept. of CSE, UGV 3

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Tests
(45)

Assignments
(15)

Quizzes
(15)

Attendance
(15)

Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

Bloom's Category Test

Remember 7

Understand 7

Apply 20

Analyze 15

Evaluate 6

Create 5

CIE- Continuous Internal Evaluation (90 Marks)

SEE- Semester End Examination (60 Marks)

Md. Masudur Rahman, Dept. of CSE, UGV 4

COURSE PLAN

Week

No
Topics Teaching Learning Strategy(s) Assessment Strategy(s) Alignment to CLO

1 Introduction to Parallel and Distributed Computing Lectures, Class Discussions Quiz, Participation CLO 1

2 Flynn’s Taxonomy and Parallel Architectures Lectures, Visual Diagrams Assignment on Classification CLO 2

3 Parallel Programming Concepts and Models
Interactive Coding Sessions,

Demonstrations
Lab Exercises CLO 3

4 Distributed System Architectures Case Studies, Group Discussions Midterm Quiz CLO 1, CLO 5

5 Synchronization Techniques in Parallel Systems
Hands-On Labs, Collaborative Problem

Solving
Lab Assessment CLO 7

6 Pipelining and Instruction-Level Parallelism Lectures, Simulations Problem-Solving Assignment CLO 8

7 MapReduce Framework Basics Tutorials, Hands-On Exercises Programming Assignment CLO 4

8 Big Data and Distributed Processing Applications Case Studies, Practical Labs Lab Exercise CLO 4, CLO 6

9 Distributed Databases: Fragmentation and Allocation Lectures, Class Exercises Quiz on Fragmentation Concepts CLO 5

10 Data Replication and Fault Tolerance Group Activities, Problem Solving Case Study Report CLO 6

11 Performance Optimization in Parallel Systems
Interactive Problem Solving,

Discussions
Midterm Exam CLO 6, CLO 8

12 Distributed Programming Techniques Tutorials, Hands-On Practice Programming Lab CLO 4, CLO 5

13 Resource Management in Distributed Systems Lectures, Interactive Discussions Quiz CLO 6, CLO 7

14 Scalability and Load Balancing in Distributed Systems Case Studies, Simulations Assignment on Scalability Strategies CLO 6

15
Advanced MapReduce and Fault Tolerance

Mechanisms
Lab Sessions, Research Presentations Project Report CLO 4, CLO 6

16 Applications of Parallel and Distributed Systems Practical Applications, Guest Lectures Final Project Presentation CLO 4, CLO 6, CLO 7

17 Course Review and Final Exam Q&A, Practice Tests Final Exam All CLOs

WEEK 1
SLIDES 6-25

Md. Masudur Rahman, Dept. of CSE, UGV 6

PARALLEL PROCESSING

7

What is Serial Computing?

Traditionally, software has been written for serial computation:

• A problem is broken into a discrete series of instructions

• Instructions are executed sequentially one after another

• Executed on a single processor

• Only one instruction may execute at any moment in time

8

Example of Serial Computing

9

What is Parallel Computing?

In the simplest sense, parallel computing is the simultaneous

use of multiple compute resources to solve a computational

problem:

10

❖A problem is broken into discrete parts that can be solved

concurrently

❖Each part is further broken down to a series of instructions

❖Instructions from each part execute simultaneously on

different processors

❖An overall control/coordination mechanism is employed

Parallel Computing

11

Parallel Computing

• The computational problem should be able to:

–Be broken apart into discrete pieces of work that can be

solved simultaneously;

–Execute multiple program instructions at any moment in time;

–Be solved in less time with multiple compute resources than

with a single compute resource.

• The compute resources are typically:

–A single computer with multiple processors/cores

–An arbitrary number of such computers connected by a

network

12

Parallel Computers:
Virtually all stand-alone computers today are parallel from a

hardware perspective:

• Multiple functional units (L1 cache, L2 cache, branch, decode,

floating-point, graphics processing (GPU), etc.)

• Multiple execution units/cores

• Multiple hardware threads

Fig: Networks connect multiple stand-alone computers (nodes) to make larger parallel

computer clusters 13

A typical LLNL parallel computer cluster
• Each compute node is a multi-processor parallel computer in itself

• Multiple compute nodes are networked together with an InfiniBand

(IB) network

• Special purpose nodes, also multi-processor, are used for other

purposes

14

Why Use Parallel Computing?

SAVE TIME AND/OR MONEY :

• In theory, throwing more resources at a task will shorten its

time to completion, with potential cost savings.

• Parallel computers can be built from cheap, commodity

components.

15

SOLVE LARGER / MORE COMPLEX PROBLEMS:

• Many problems are so large and/or complex that it is impractical

or impossible to solve them on a single computer, especially

given limited computer memory.

• Example: Web search engines/databases processing millions of

transactions every second

16

Why Use Parallel Computing?

PROVIDE CONCURRENCY:

✓A single compute resource can only do one thing at a time.

Multiple compute resources can do many things simultaneously.

✓Example: Collaborative Networks provide a global venue where

people from around the world can meet and conduct work

"virtually".

17

TAKE ADVANTAGE OF NON-LOCAL RESOURCES:

Using compute resources on a wide area network, or even the

Internet when local compute resources are scarce or insufficient.

18

MAKE BETTER USE OF UNDERLYING PARALLEL

HARDWARE:

• Modern computers, even laptops, are parallel in architecture

with multiple processors/cores.

• Parallel software is specifically intended for parallel hardware

with multiple cores, threads, etc.

• In most cases, serial programs run on modern computers

"waste" potential computing power.

19

Who is Using Parallel Computing?

Historically, parallel computing has been considered to be "the

high end of computing", and has been used to model difficult

problems in many areas of science and engineering:

20

Who is Using Parallel Computing?

Science and Engineering:
• Atmosphere, Earth, Environment

• Physics - applied, nuclear, particle, condensed matter,

high pressure, fusion, photonics

• Bioscience, Biotechnology, Genetics

• Chemistry, Molecular Sciences

• Defense, Geology

• Mechanical Engineering - from prosthetics to

spacecraft

• Electrical Engineering, Circuit Design,

Microelectronics

• Computer Science, Mathematics 21

Who is Using Parallel Computing?

Industrial and Commercial:

Today, commercial applications provide an equal or greater driving force

in the development of faster computers. These applications require the

processing of large amounts of data in sophisticated ways. For example:

22

Who is Using Parallel Computing?

Industrial and Commercial:

• "Big Data", databases, data mining

• Oil exploration

• Web search engines, web based business services

• Medical imaging and diagnosis

• Pharmaceutical design

• Financial and economic modeling

• Management of national and multi-national corporations

• Advanced graphics and virtual reality, particularly in the entertainment

industry

• Networked video and multi-media technologies

• Collaborative work environments

23

Open Questions

http://www.avego.com/blog/wp-content/uploads/2013/06/Your-Questions-Answered.jpg

24

THANK YOU

25

WEEK 2
SLIDES 26-37

Md. Masudur Rahman, Dept. of CSE, UGV 26

Parallel Design and Programming

27

Von Neumann Architecture
•Comprised of four main components:

–Memory

–Control Unit

–Arithmetic Logic Unit

–Input / Output

•Read/write, random access memory is used to store both program instructions and data

–Program instructions are coded data which tell the computer to do something

–Data is simply information to be used by the program

•Control unit fetches instructions/data from memory, decodes the instructions and

then sequentially coordinates operations to accomplish the programmed task.

•Aritmetic Unit performs basic arithmetic operations

•Input/Output is the interface to the human operator

Parallel computers still follow this basic design, just multiplied in units. The basic,

fundamental architecture remains the same.

28

Flynn's Classical Taxonomy
Flynn's taxonomy distinguishes multi-processor computer

architectures according to how they can be classified along the

two independent dimensions of Instruction Stream and Data

Stream. Each of these dimensions can have only one of two

possible states: Single or Multiple.

•The matrix below defines the 4 possible classifications

according to Flynn:

29

Single Instruction, Single Data (SISD):

1.A serial (non-parallel) computer

2.Single Instruction: Only one instruction stream is being acted on by the CPU

during any one clock cycle

3.Single Data: Only one data stream is being used as input during any one clock

cycle

4.Deterministic execution

5.This is the oldest type of computer

6.Examples: older generation mainframes, minicomputers, workstations and single

processor/core PCs.

30

Single Instruction, Multiple Data (SIMD):

•A type of parallel computer

•Single Instruction: All processing units execute the same instruction at any given clock cycle

•Multiple Data: Each processing unit can operate on a different data element

•Best suited for specialized problems characterized by a high degree of regularity, such as

graphics/image processing.

•Synchronous (lockstep) and deterministic execution

•Two varieties: Processor Arrays and Vector Pipelines

•Most modern computers, particularly those with graphics processor units (GPUs) employ SIMD

instructions and execution units.

31

Multiple Instruction, Single Data (MISD)

•A type of parallel computer

•Multiple Instruction: Each processing unit operates on the data independently

via separate instruction streams.

•Single Data: A single data stream is fed into multiple processing units.

•Few (if any) actual examples of this class of parallel computer have ever

existed.

•Some conceivable uses might be:

–multiple cryptography algorithms attempting to crack a single coded

message.

32

Multiple Instruction, Multiple Data (MIMD):
•A type of parallel computer

•Multiple Instruction: Every processor may be executing a different instruction stream

•Multiple Data: Every processor may be working with a different data stream

•Execution can be synchronous or asynchronous, deterministic or non-deterministic

•Currently, the most common type of parallel computer - most modern supercomputers fall

into this category.

•Examples: most current supercomputers, networked parallel computer clusters and

"grids", multi-processor SMP computers, multi-core PCs.

•Note: many MIMD architectures also include SIMD execution sub-components

33

Some General Parallel Terminology

•Supercomputing / High Performance Computing (HPC) :Using the

world's fastest and largest computers to solve large problems.

•Node : A standalone "computer in a box". Usually comprised of

multiple CPUs/processors/cores, memory, network interfaces, etc.

Nodes are networked together to comprise a supercomputer.

•CPU / Socket / Processor / Core :

❑CPU (Central Processing Unit) was a singular execution

component for a computer.

❑Multiple CPUs were incorporated into a node.

❑Individual CPUs were subdivided into multiple "cores", each

being a unique execution unit.

❑CPUs with multiple cores are sometimes called "sockets" -

vendor dependent. The result is a node with multiple CPUs, each

containing multiple cores.
34

•Task : A logically discrete section of computational work. A task is typically a

program or program-like set of instructions that is executed by a processor. A

parallel program consists of multiple tasks running on multiple processors.

•Pipelining : Breaking a task into steps performed by different processor units,

with inputs streaming through, much like an assembly line; a type of parallel

computing.

•Shared Memory : From a strictly hardware point of view, describes a computer

architecture where all processors have direct (usually bus based) access to

common physical memory. In a programming sense, it describes a model where

parallel tasks all have the same "picture" of memory and can directly address and

access the same logical memory locations regardless of where the physical

memory actually exists.

•Distributed Memory : In hardware, refers to network based memory access for

physical memory that is not common. As a programming model, tasks can only

logically "see" local machine memory and must use communications to access

memory on other machines where other tasks are executing

•Symmetric Multi-Processor (SMP) : Shared memory hardware architecture

where multiple processors share a single address space and have equal access to

all resources.

35

•Synchronization : The coordination of parallel tasks in real time, very often

associated with communications. Often implemented by establishing a synchronization

point within an application where a task may not proceed further until another task(s)

reaches the same or logically equivalent point.

•Massively Parallel : Refers to the hardware that comprises a given parallel system -

having many processing elements. The meaning of "many" keeps increasing, but

currently, the largest parallel computers are comprised of processing elements

numbering in the hundreds of thousands to millions.

•Embarrassingly Parallel : Solving many similar, but independent tasks

simultaneously; little to no need for coordination between the tasks.

•Scalability : Refers to a parallel system's (hardware and/or software) ability to

demonstrate a proportionate increase in parallel speedup with the addition of more

resources. Factors that contribute to scalability include:

–Hardware - particularly memory-cpu bandwidths and network communication

properties

–Application algorithm

–Parallel overhead related

–Characteristics of your specific application

36

Costs of Parallel Programming

•Amdahl's Law states that potential program speedup is defined by the fraction

of code (P) that can be parallelized:

•If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup).

•If all of the code is parallelized, P = 1 and the speedup is infinite (in theory).

•If 50% of the code can be parallelized, maximum speedup = 2, meaning the

code will run twice as fast.

•Introducing the number of processors performing the parallel fraction of work,

the relationship can be modeled by:

1 speedup

= -------- 1 -
P

1

speedup = --------------

 P

 --- + S

 N

where P = parallel fraction, N = number of processors and S = serial fraction.

37

WEEK 3
SLIDES 38-50

Md. Masudur Rahman, Dept. of CSE, UGV 38

PARALLEL COMPUTER MODEL

39

OUTLINE

⚫ Multivector Computer

− Description

− Advantages

− Architecture

⚫ Vector supercomputers

⚫ Memory-to-memory

⚫ Register-to-register

⚫ SIMD Computer

40

DESCRIPTION OF VECTOR PROCESSORS

41

ADVANTAGES OF VECTOR PROCESSORS

42

ARCHITECTURE OF A VECTOR
SUPERCOMPUTERS

43

ARCHITECTURE OF A VECTOR
SUPERCOMPUTERS(CONT)

⚫ Often build on top of a scalar processor

⚫ Vector processor is attached to the scalar processor as an optional feature

⚫ Program and data are first loaded into the main memory through a host
computer

⚫ All instructions are first decoded by the scalar control unit. If the
decoded instruction is a scalar operation or a program control then directly
executed by the scalar processor using the scalar functional pipelines

⚫ If the instruction is decoded as a vector operation then sent to the vector
control unit(VCU). VCU supervise the flow of vector data between the
main memory and vector functional pipelines

⚫ Two pipeline vector supercomputer models

− Register-to-register

− Memory-to-memory

44

VECTOR PROCESSOR ARCHITECTURES

45

VECTOR PROCESSOR
ARCHITECTURES (CONT)

46

COMPONENTS OF VECTOR PROCESSORS

47

SIMD SUPERCOMPUTERS

Fig. : Operational Model of SIMD computers

48

SIMD MACHINE MODEL

⚫ An operational model of an SIMD computer is specified

by a 5-tuple: M = (N, C, I, M, R) where

− N is the number of processing elements (PEs)

− C is the set of instructions directly executed by the CU,

including scalar and program flow control instructions

− I is the set of instructions broadcast by the CU to all PEs for

parallel execution

− M is the set of masking schemes, where each mask partitions the

set of PEs into enabled and disabled subsets

− R is the set of data-routing functions, specifying various patterns

to be setup in the interconnection network for inter-PE

communication
49

QUESTIONS?

• THANK YOU

50

WEEK 4
SLIDES 51-65

51

Program and Network Properties

• Conditions of parallelism

• Program partitioning and scheduling

• Program flow mechanisms

• System interconnect architectures

52

Conditions of Parallelism

The exploitation of parallelism in computing requires

understanding the basic theory associated with it.

Progress is needed in several areas:

computation models for parallel computing

interprocessor communication in parallel architectures

integration of parallel systems into general environments

53

Data dependences

The ordering relationship between statements is indicated by the data

dependence.

•Flow dependence

•Anti dependence

•Output dependence

•I/O dependence

•Unknown dependence

54

Data Dependence - 1

• Flow dependence: S1 precedes S2, and at least one output of S1 is

input to S2.

• Antidependence: S1 precedes S2, and the output of S2 overlaps

the input to S1.

• Output dependence: S1 and S2 write to the same output variable.

• I/O dependence: two I/O statements (read/write) reference the

same variable, and/or the same file.

55

Data Dependence - 2

• Unknown dependence:

o The subscript of a variable is itself subscripted.

o The subscript does not contain the loop index variable.

o A variable appears more than once with subscripts having different

coefficients of the loop variable (that is, different functions of the loop

variable).

o The subscript is nonlinear in the loop index variable.

• Parallel execution of program segments which do not have total data

independence can produce non-deterministic results.

56

Data dependence example

S1: Load R1, A

S2: Add R2, R1

S3: Move R1, R3

S4: Store B, R1

S1

S2 S4

S3

57

I/O dependence example

S1: Read (4), A(I)

S2: Rewind (4)

S3: Write (4), B(I)

S4: Rewind (4)

S1 S3
I/O

58

Control dependence

• The order of execution of statements cannot be determined before

run time

o Conditional branches

o Successive operations of a looping procedure

59

Control dependence examples

 Do 20 I = 1, N

 A(I) = C(I)

 IF(A(I) .LT. 0) A(I)=1

20 Continue

Do 10 I = 1, N

 IF(A(I-1) .EQ. 0) A(I)=0

10 Continue

60

Resource dependence

• Concerned with the conflicts in using shared resources

o Integer units

o Floating-point units

o Registers

o Memory areas

o ALU

o Workplace storage

61

Bernstein’s conditions

• Set of conditions for two processes to execute in parallel

 I1  O2 = Ø

 I2  O1 = Ø

 O1  O2 = Ø

62

Bernstein’s Conditions - 2

• In terms of data dependencies, Bernstein’s conditions imply

that two processes can execute in parallel if they are flow-

independent, anti-independent, and output-independent.

• The parallelism relation || is commutative (Pi || Pj implies Pj ||

Pi), but not transitive (Pi || Pj and Pj || Pk does not imply Pi ||

Pk) . Therefore, || is not an equivalence relation.

• Intersection of the input sets is allowed.

63

Utilizing Bernstein’s conditions

P1 : C = D x E

P2 : M = G + C

P3 : A = B + C

P4 : C = L + M

P5 : F = G / E

P1

P3

P2 P4

P5

64

Utilizing Bernstein’s conditions

65

WEEK 5
SLIDES 66-77

66

Hardware parallelism

• A function of cost and performance tradeoffs

• Displays the resource utilization patterns of

simultaneously executable operations

• Denote the number of instruction issues per

machine cycle: k-issue processor

• A multiprocessor system with n k-issue processors

should be able to handle a maximum number of nk

threads of instructions simultaneously

67

Software parallelism

• Defined by the control and data dependence of

programs

• A function of algorithm, programming style, and

compiler organization

• The program flow graph displays the patterns of

simultaneously executable operations

68

Mismatch between software and hardware parallelism - 1

L1 L2 L3 L4

X1 X2

+ -

A B

Fig. : Software parallelism

Cycle 1

Cycle 2

Cycle 3

Maximum software

parallelism (L=load, X/+/- =

arithmetic)

8 instructions(4 loads and 4

arithmetic operations)

Parallelism varies from 4 to

2 in three cycles

69

Mismatch between software and hardware
parallelism - 2

L1

L2

L4

L3X1

X2

+

-
A

B

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Same problem, but

considering the

parallelism on a two-issue

superscalar processor.

70

Mismatch between software and hardware
parallelism - 3

L1

L2

S1

X1

+

L5

L3

L4

S2

X2

-

L6

BA

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Same problem,

with two single-

issue processors

= inserted for

synchronization

Fig. : Dual processor execution
71

Software parallelism

• Control parallelism – allows two or more operations to be

performed concurrently

o Pipelining, multiple functional units

• Data parallelism – almost the same operation is performed over

many data elements by many processors concurrently

o Code is easier to write and debug

72

Types of Software Parallelism

• Control Parallelism – two or more operations can be performed
simultaneously. This can be detected by a compiler, or a
programmer can explicitly indicate control parallelism by using
special language constructs or dividing a program into multiple
processes.

• Data parallelism – multiple data elements have the same
operations applied to them at the same time. This offers the highest
potential for concurrency (in SIMD and MIMD modes).
Synchronization in SIMD machines handled by hardware.

73

Solving the Mismatch Problems

• Develop compilation support

• Redesign hardware for more efficient exploitation by compilers

• Use large register files and sustained instruction pipelining.

• Have the compiler fill the branch and load delay slots in code

generated for RISC processors.

74

The Role of Compilers

• Compilers used to exploit hardware features to improve
performance.

• Interaction between compiler and architecture design is a necessity
in modern computer development.

• It is not necessarily the case that more software parallelism will
improve performance in conventional scalar processors.

• The hardware and compiler should be designed at the same time.

75

Program Partitioning & Scheduling

• The size of the parts or pieces of a program that can be considered

for parallel execution can vary.

• The sizes are roughly classified using the term “granule size,” or

simply “granularity.”

• The simplest measure, for example, is the number of instructions in

a program part.

• Grain sizes are usually described as fine, medium or coarse,

depending on the level of parallelism involved.

76

Latency

• Latency is the time required for communication between different

subsystems in a computer.

• Memory latency, for example, is the time required by a processor to

access memory.

• Synchronization latency is the time required for two processes to

synchronize their execution.

• Computational granularity and communication latency are closely

related.

77

WEEK 6
SLIDES 78-98

78

Levels of Parallelism

Jobs or programs

Instructions

or statements

Non-recursive loops

or unfolded iterations

Procedures, subroutines,

tasks, or coroutines

Subprograms, job steps or

related parts of a program

}
}

Coarse grain

Medium grain

} Fine grain

Increasing

communication

demand and

scheduling

overhead

Higher degree of

parallelism

79

Instruction Level Parallelism

• This fine-grained, or smallest granularity level typically involves less

than 20 instructions per grain. The number of candidates for

parallel execution varies from 2 to thousands, with about five

instructions or statements (on the average) being the average level of

parallelism.

• Advantages:

o There are usually many candidates for parallel execution

o Compilers can usually do a reasonable job of finding this parallelism

80

Loop-level Parallelism

• Typical loop has less than 500 instructions.

• If a loop operation is independent between iterations, it can be

handled by a pipeline, or by a SIMD machine.

• Most optimized program construct to execute on a parallel or vector

machine

• Some loops (e.g. recursive) are difficult to handle.

• Loop-level parallelism is still considered fine grain computation.

81

Procedure-level Parallelism

• Medium-sized grain; usually less than 2000 instructions.
• Detection of parallelism is more difficult than with smaller grains;

interprocedural dependence analysis is difficult and history-
sensitive.

• Communication requirement less than instruction-level
• SPMD (single procedure multiple data) is a special case
• Multitasking belongs to this level.

82

Subprogram-level Parallelism

• Job step level; grain typically has thousands of instructions;

medium- or coarse-grain level.

• Job steps can overlap across different jobs.

• Multiprograming conducted at this level

• No compilers available to exploit medium- or coarse-grain

parallelism at present.

83

Job or Program-Level Parallelism

• Corresponds to execution of essentially independent jobs or

programs on a parallel computer.

• This is practical for a machine with a small number of powerful

processors, but impractical for a machine with a large number of

simple processors (since each processor would take too long to

process a single job).

84

Communication Latency

• Balancing granularity and latency can yield better performance.
• Various latencies attributed to machine architecture, technology,

and communication patterns used.
• Latency imposes a limiting factor on machine scalability. Ex.

Memory latency increases as memory capacity increases, limiting
the amount of memory that can be used with a given tolerance for
communication latency.

85

Interprocessor Communication Latency

• Needs to be minimized by system designer

• Affected by signal delays and communication patterns

• Ex. n communicating tasks may require n (n - 1)/2 communication

links, and the complexity grows quadratically, effectively limiting the

number of processors in the system.

86

Grain Packing and Scheduling

• Two questions:

o How can I partition a program into parallel “pieces” to yield the

shortest execution time?

o What is the optimal size of parallel grains?

• There is an obvious tradeoff between the time spent scheduling and

synchronizing parallel grains and the speedup obtained by

parallel execution.

• Solution is both problem-dependent and machine-dependent.

• Goal is to produce a short schedule for fast execution of subdivided

program modules.

• One approach to the problem is called “grain packing” 87

Program Graphs and Packing

• A program graph is similar to a dependence graph
o Nodes = { (n,s) }, where n = node name, s = size (larger s = larger grain

size).
o Edges = { (v,d) }, where v = variable being “communicated,” and d =

communication delay.
• Packing two (or more) nodes produces a node with a larger grain

size and possibly more edges to other nodes.
• Packing is done to eliminate unnecessary communication

delays or reduce overall scheduling overhead.

88

EENG-630 - Chapter 2
89

Scheduling

• A schedule is a mapping of nodes to processors and start times such

that communication delay requirements are observed, and no two

nodes are executing on the same processor at the same time.

• Some general scheduling goals

o Schedule all fine-grain activities in a node to the same processor to

minimize communication delays.

o Select grain sizes for packing to achieve better schedules for a particular

parallel machine.

90

SCHEDULING (CONT)

91

Static multiprocessor scheduling

• Grain packing may not be optimal

• Dynamic multiprocessor scheduling is an NP-hard problem

• Node duplication is a static scheme for multiprocessor scheduling

92

Node duplication

• Duplicate some nodes to eliminate idle time and reduce

communication delays

• Grain packing and node duplication are often used jointly to

determine the best grain size and corresponding schedule

93

Schedule without node duplication

A,4
a,1

b,1 c,8

a,8

c,1

C,1B,1

D,2 E,2

e,4d,4

P1 P2 P2P1

A

D

B

I

E

C

I4

6

13

21

27

23

20

16

14

12

4

94

Schedule with node duplication

A,4
a,1

b,1 c,1

a,1

c,1

C’,1B,1

D,2 E,2

P1 P2 P2P1

A

D

B

E

C

A
4

6

10

14

13

9

6

4

C,1

A’,4

a,1

C
7

95

Grain determination and scheduling optimization

Step 1: Construct a fine-grain program graph

Step 2: Schedule the fine-grain computation

Step 3: Grain packing to produce coarse grains

Step 4: Generate a parallel schedule based on the packed graph

96

System Interconnect Architectures

• Direct networks for static connections

• Indirect networks for dynamic connections

• Networks are used for

o internal connections in a centralized system among

• processors

• memory modules

• I/O disk arrays

o distributed networking of multicomputer nodes

97

Goals and Analysis

• The goals of an interconnection network are to provide
o low-latency
o high data transfer rate
o wide communication bandwidth

• Analysis includes
o latency
o bisection bandwidth
o data-routing functions
o scalability of parallel architecture

98

WEEK 7
SLIDES 99-107

99

Network Properties and Routing

• Static networks: point-to-point direct connections that will not

change during program execution

• Dynamic networks:

o switched channels dynamically configured to match user program

communication demands

o include buses, crossbar switches, and multistage networks

• Both network types also used for inter-PE data routing in SIMD

computers

100

Network Parameters

• Network size: The number of nodes (links or channels) in the graph

used to represent the network

• Node Degree d: The number of edges incident to a node. In the case

of unidirectional channels, the number of channels into a node is

the in degree and that out of a node is the out degree. Then

the node degree is the sum of the two.

• Network Diameter D: The maximum shortest path between any two

nodes

101

Network Parameters (cont.)

• Bisection Width:
o Channel bisection width b: The minimum number of edges (channels)

along the cut that divides the network in two equal halves
o Each channel has w bit wires
o Wire bisection width: B=b*w; B is the wiring density of the network. It

provides a good indicator of the max communication bandwidth along the
bisection of the network

102

Terminology - 1

• Network usually represented by a graph with a finite
number of nodes linked by directed or undirected edges.

• Number of nodes in graph = network size .
• Number of edges (links or channels) incident on a node =

node degree d (also note in and out degrees when edges
are directed). Node degree reflects number of I/O ports
associated with a node, and should ideally be small and
constant.

• Diameter D of a network is the maximum shortest path
between any two nodes, measured by the number of links
traversed; this should be as small as possible (from a
communication point of view).

103

Terminology - 2

• Channel bisection width b = minimum number of edges cut
to split a network into two parts each having the same
number of nodes. Since each channel has w bit wires, the
wire bisection width B = bw. Bisection width provides good
indication of maximum communication bandwidth along
the bisection of a network, and all other cross sections
should be bounded by the bisection width.

• Wire (or channel) length = length (e.g. weight) of edges
between nodes.

• Network is symmetric if the topology is the same looking
from any node; these are easier to implement or to
program.

• Other useful characterizing properties: homogeneous
nodes? buffered channels? nodes are switches?

104

Data Routing Functions

Data-routing network used for inter-PE data exchange. This network
can be static (i.e: hypercube) or dynamic (i.e: multistage network)

Commonly data-routing functions includes:

• Shifting
• Rotating
• Permutation (one to one)
• Broadcast (one to all)
• Multicast (many to many)
• Personalized broadcast (one to many)
• Shuffle
• Exchange
• Etc.

105

Hypercube Routing Functions

• If the vertices of a n-dimensional cube are labeled with n-bit

numbers so that only one bit differs between each pair of adjacent

vertices, then n routing functions are defined by the bits in the node

(vertex) address.

• For example, with a 3-dimensional cube, we can easily identify

routing functions that exchange data between nodes with addresses

that differ in the least significant, most significant, or middle bit.

• Figure: 2.15

106

Factors Affecting Network Performance

• Functionality – how the network supports data routing, interrupt

handling, synchronization, request/message combining, and

coherence

• Network latency – worst-case time for a unit message to be

transferred

• Bandwidth – maximum data rate

• Hardware complexity – implementation costs for wire, logic,

switches, connectors, etc.

• Scalability – how easily does the scheme adapt to an increasing

number of processors, memories, etc.?

107

WEEK 8
SLIDES 108-127

108

Static Networks

• Linear Array

• Ring and Chordal Ring

• Barrel Shifter

• Tree and Star

• Fat Tree

• Mesh and Torus

109

Static Networks – Linear Array

• N nodes connected by n-1 links (not a bus); segments between

different pairs of nodes can be used in parallel.

• Internal nodes have degree 2; end nodes have degree 1.

• Diameter = n-1

• Bisection = 1

• For small n, this is economical, but for large n, it is obviously

inappropriate.

110

Static Networks – Ring, Chordal Ring

• Like a linear array, but the two end nodes are connected by an n th
link; the ring can be uni- or bi-directional. Diameter is n/2 for a
bidirectional ring, or n for a unidirectional ring.

• By adding additional links (e.g. “chords” in a circle), the node degree
is increased, and we obtain a chordal ring. This reduces the network
diameter.

• In the limit, we obtain a fully-connected network, with a node degree
of n -1 and a diameter of 1.

111

Static Networks – Barrel Shifter

• Like a ring, but with additional links between all pairs of nodes that
have a distance equal to a power of 2.

• With a network of size N = 2n, each node has degree d = 2n -1, and
the network has diameter D = n /2.

• Barrel shifter connectivity is greater than any chordal ring of lower
node degree.

• Barrel shifter much less complex than fully-interconnected network.

112

113

Static Networks – Tree and Star

• A k-level completely balanced binary tree will have N = 2k – 1 nodes,

with maximum node degree of 3 and network diameter is 2(k – 1).

• The balanced binary tree is scalable, since it has a constant

maximum node degree.

• A star is a two-level tree with a node degree d = N – 1 and a constant

diameter of 2.

114

Static Networks – Fat Tree

• A fat tree is a tree in which the number of edges between nodes

increases closer to the root (similar to the way the thickness of limbs

increases in a real tree as we get closer to the root).

• The edges represent communication channels (“wires”), and since

communication traffic increases as the root is approached, it seems

logical to increase the number of channels there.

115

Static Networks – Mesh and Torus

• Pure mesh – N = n k nodes with links between each adjacent pair of

nodes in a row or column (or higher degree). This is not a

symmetric network; interior node degree d = 2k, diameter = k (n –

1).

• Illiac mesh (used in Illiac IV computer) – wraparound is allowed,

thus reducing the network diameter to about half that of the

equivalent pure mesh.

• A torus has ring connections in each dimension, and is symmetric.

An n  n binary torus has node degree of 4 and a diameter of 2  n /

2 .

116

Static Networks – Systolic Array

• A systolic array is an arrangement of processing elements and

communication links designed specifically to match the computation

and communication requirements of a specific algorithm (or class of

algorithms).

• This specialized character may yield better performance than more

generalized structures, but also makes them more expensive, and

more difficult to program.

117

Network Throughput

• Network throughput – number of messages a network can handle in

a unit time interval.

• One way to estimate is to calculate the maximum number of

messages that can be present in a network at any instant (its

capacity); throughput usually is some fraction of its capacity.

• A hot spot is a pair of nodes that accounts for a disproportionately

large portion of the total network traffic (possibly causing

congestion).

• Hot spot throughput is maximum rate at which messages can be

sent between two specific nodes.

118

Dynamic Connection Networks

• Dynamic connection networks can implement all communication

patterns based on program demands.

• In increasing order of cost and performance, these include

o bus systems

o multistage interconnection networks

o crossbar switch networks

• Price can be attributed to the cost of wires, switches, arbiters, and

connectors.

• Performance is indicated by network bandwidth, data transfer rate,

network latency, and communication patterns supported.

119

Dynamic Networks – Bus Systems

• A bus system (contention bus, time-sharing bus) has

o a collection of wires and connectors

o multiple modules (processors, memories, peripherals, etc.) which

connect to the wires

o data transactions between pairs of modules

• Bus supports only one transaction at a time.

• Bus arbitration logic must deal with conflicting requests.

• Lowest cost and bandwidth of all dynamic schemes.

• Many bus standards are available.

120

Dynamic Networks – Switch Modules

• An a  b switch module has a inputs and b outputs. A binary switch

has a = b = 2.

• It is not necessary for a = b, but usually a = b = 2k, for some integer

k.

• In general, any input can be connected to one or more of the

outputs. However, multiple inputs may not be connected to the

same output.

• When only one-to-one mappings are allowed, the switch is called a

crossbar switch.

121

Multistage Networks

• In general, any multistage network is comprised of a collection of a

 b switch modules and fixed network modules. The a  b

switch modules are used to provide variable permutation or

other reordering of the inputs, which are then further reordered

by the fixed network modules.

• A generic multistage network consists of a sequence alternating

dynamic switches (with relatively small values for a and b) with

static networks (with larger numbers of inputs and outputs). The

static networks are used to implement interstage connections (ISC).

122

Omega Network

• A 2  2 switch can be configured for
o Straight-through
o Crossover
o Upper broadcast (upper input to both outputs)
o Lower broadcast (lower input to both outputs)
o (No output is a somewhat vacuous possibility as well)

• With four stages of eight 2  2 switches, and a static
perfect shuffle for each of the four ISCs, a 16 by 16
Omega network can be constructed (but not all
permutations are possible).

• In general , an n-input Omega network requires log 2 n
stages of 2  2 switches and n / 2 switch modules.

123

124

Baseline Network

• A baseline network can be shown to be topologically equivalent to

other networks (including Omega), and has a simple recursive

generation procedure.

• Stage k (k = 0, 1, …) is an m  m switch block (where m = N / 2k)

composed entirely of 2  2 switch blocks, each having two

configurations: straight through and crossover.

125

4  4 Baseline Network

126

Crossbar Networks

• A m  n crossbar network can be used to provide a constant latency

connection between devices; it can be thought of as a single stage switch.

• Different types of devices can be connected, yielding different

constraints on which switches can be enabled.

o With m processors and n memories, one processor may be able to generate

requests for multiple memories in sequence; thus several switches might be set in

the same row.

o For m  m interprocessor communication, each PE is connected to both an input

and an output of the crossbar; only one switch in each row and column can be

turned on simultaneously. Additional control processors are used to manage the

crossbar itself.

127

WEEK 9
SLIDES 128-145

128

PIPELINING

Md. Masudur Rahman, Dept. of CSE, UGV 129

OVERVIEW

● Pipelining is widely used in modern

processors.

● Pipelining improves system performance in terms

of throughput.

● Pipelined organization requires sophisticated

compilation techniques.

Md. Masudur Rahman, Dept. of CSE, UGV 130

BASIC
CONCEPTS

● Pipelining is an implementation technique

that overlaps multiple instruction execution.

An instruction is broken into smaller steps

Each smaller step (pipeline stage or pipeline

segment) takes a fraction of the time needed

to complete the entire instruction.

●

●

Md. Masudur Rahman, Dept. of CSE, UGV 131

MAKING THE EXECUTION OF PROGRAMS FASTER

● Use faster circuit technology to build the processor and the

main memory.

● Arrange the hardware so that more than one operation can be

performed at the same time.

● In the latter way, the number of operations performed per

second is increased even though the elapsed time needed to

perform any one operation is not changed.

Md. Masudur Rahman, Dept. of CSE, UGV 132

TRADITIONAL PIPELINE CONCEPT

●Laundry Example

●Ann, Brian, Cathy, Dave

each have one load of clothes

to wash, dry, and fold

●Washer takes 30 minutes

●Dryer takes 40 minutes

●“Folder” takes 20 minutes

A B C D

Md. Masudur Rahman, Dept. of CSE, UGV 133

TRADITIONAL PIPELINE CONCEPT

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

● Sequential laundry takes 6 hours

for 4 loads

● If they learned pipelining, how

long would laundry take?

6 PM 7 8 9 10 11 Midnight

Time

Md. Masudur Rahman, Dept. of CSE, UGV 134

TRADITIONAL PIPELINE CONCEPT

● Pipelined laundry takes

3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

Md. Masudur Rahman, Dept. of CSE, UGV 135

TRADITIONAL PIPELINE CONCEPT

● Pipelining doesn’t help latency

of single task, it helps

throughput of entire workload

● Pipeline rate limited by slowest

pipeline stage

● Multiple tasks operating

simultaneously using different

resources

● Potential speedup = Number

pipe stages

● Unbalanced lengths of pipe

stages reduces speedup

● Time to “fill” pipeline and time

to “drain” it reduces speedup

● Stall for Dependences

A

B

C

D

6 PM 7 8 9

T

a

s

k

O

r

d

e

r

Time

30 40 40 40 40 20

Md. Masudur Rahman, Dept. of CSE, UGV 136

USE THE IDEA OF PIPELINING IN A COMPUTER

F
1

E
1

F
2

E
2

F
3

E
3

I1 I2 I3

(a) Sequential execution

Instruction
fetch
unit

Execution
unit

Interstage buffer

B1

(b) Hardware organization

Time

F1 E1

F2 E2

F3 E3

I1

I2

I3

Instruction

(c) Pipelined execution

Figure 8.1. Basic idea of instruction pipelining.

Clock cycle 1 2 3 4

Time

Fetch + Execution

Md. Masudur Rahman, Dept. of CSE, UGV 137

USE THE IDEA OF PIPELINING IN A COMPUTER

Clock cycle 1 2 3 4 5 6

Time

7

Instruction

I1 F1 D1 E1 W1

I2 F2 D2 E2 W2

I3 F3 D3 E3 W3

I4 F4 D4 E4 W4

Figure 8.2. A 4 stage pipeline.

(a) Instruction execution divided into four steps

Interstage buffers

F : Fetch
instruction

D : Decode
instruction
and fetch
operands

E: Execute
operation

W : Write
results

(b) Hardware organization

B1 B2 B3

Fetch + Decode

+ Execution + Write

Md. Masudur Rahman, Dept. of CSE, UGV 138

ROLE OF CACHE MEMORY

● Each pipeline stage is expected to complete in one

clock cycle.

● The clock period should be long enough to let the

slowest pipeline stage to complete.

● Faster stages can only wait for the slowest one to

complete.

● Since main memory is very slow compared to the

execution, if each instruction needs to be fetched

from main memory, pipeline is almost useless.

● Fortunately, we have cache.

Md. Masudur Rahman, Dept. of CSE, UGV 139

PIPELINE PERFORMANCE

● The potential increase in performance

resulting from pipelining is proportional to the

number of pipeline stages.

● However, this increase would be achieved

only if all pipeline stages require the same

time to complete, and there is no interruption

throughout program execution.

● Unfortunately, this is not true.

Md. Masudur Rahman, Dept. of CSE, UGV 140

PIPELINE PERFORMANCE

Clock cycle 1 2 3 4 5 6 7 8

Time

9

Instruction

I1 F1 D1 E1 W1

I2 F2 D2 E2 W2

I3 F3 D3 E3 W3

I4 F4

I5

Figure 8.3. Effect of an execution operation taking more than one clock cycle.

F5 D5 E5

D4 E4 W4

Md. Masudur Rahman, Dept. of CSE, UGV 141

PIPELINE PERFORMANCE

● The previous pipeline is said to have been stalled for two clock
cycles.

Any condition that causes a pipeline to stall is called a hazard.

Data hazard – any condition in which either the source or the
destination operands of an instruction are not available at the
time expected in the pipeline. So some operation has to be
delayed, and the pipeline stalls.

Instruction (control) hazard – a delay in the availability of an
instruction causes the pipeline to stall.

Structural hazard – the situation when two instructions require
the use of a given hardware resource at the same time.

●

●

●

●

Md. Masudur Rahman, Dept. of CSE, UGV 142

PIPELINE PERFORMANCE

F1 D1 E1 W1

F2 D2 E2 W2

F3 D3 E3 W3

I1

I2

I3

Clock cycle 1 2 3 4 5 6 7

Instruction

Figure 8.4. Pipeline stall caused by a cache miss in F2.

8 9

2 3 4 5 6 7 8Clock cycle 1

Stage

F: Fetch F1 F2 F2 F2 F2 F3

D: Decode D1 idle idle idle D2 D3

E: Execute E1 idle idle idle E2 E3

W: Write W1 idle idle idle W2 W3

(b) Function performed by each processor stage in successive clock cycles

9

(a) Instruction execution steps in successive clock cycles

Time

Time

Idle periods –

stalls (bubbles)

Instruction

hazard

Md. Masudur Rahman, Dept. of CSE, UGV 143

PIPELINE PERFORMANCE

F1 D1 E1 W1

F2 D2 E2 M2 W2

F3 D3 E3 W3

I1

I2 (Load)

I3

I4

Clock cycle 1

Instruction

F4 D4 E4

2 3 4 5 6 7

Figure 8.5. Effect of a Load instruction on pipeline timing.

F5I5 D5

Time
Structural Load X(R1), R2

hazard

Md. Masudur Rahman, Dept. of CSE, UGV 144

PIPELINE PERFORMANCE

● Again, pipelining does not result in individual

instructions being executed faster; rather, it is the

throughput that increases.

● Throughput is measured by the rate at which

instruction execution is completed.

● Pipeline stall causes degradation in pipeline

performance.

● We need to identify all hazards that may cause the

pipeline to stall and to find ways to minimize their

impact.

Md. Masudur Rahman, Dept. of CSE, UGV 145

WEEK 10
SLIDES 146-153

Md. Masudur Rahman, Dept. of CSE, UGV 146

DATA HAZARDS

Md. Masudur Rahman, Dept. of CSE, UGV 147

DATA HAZARDS

● We must ensure that the results obtained when instructions are
executed in a pipelined processor are identical to those obtained
when the same instructions are executed sequentially.

Hazard occurs

A ← 3 + A

B ← 4 × A

No hazard

A ← 5 × C

B ← 20 + C

When two operations depend on each other, they must be
executed sequentially in the correct order.
Another example:

Mul R2, R3, R4

Add R5, R4, R6

●

●

●

●

Md. Masudur Rahman, Dept. of CSE, UGV 148

DATA HAZARDS

D3 E3 W3

D2A E2 W2

Figure 8.6. Pipeline stalled by data dependency between D2 and W1.

F4 D4 E4 W4

Clock cycle 1 2 3 4 5 6 7 8

Time

9

Instruction

I1 (Mul) F1 D1 E1 W1

I2 (Add) F2 D2

I3 F3

I4

Figure 8.6. Pipeline stalled by data dependency between D2 and W1.
Md. Masudur Rahman, Dept. of CSE, UGV 149

OPERAND FORWARDING

● Instead of from the register file, the second

instruction can get data directly from the

output of ALU after the previous instruction is

completed.

● A special arrangement needs to be made to

“forward” the output of ALU to the input of

ALU.

Md. Masudur Rahman, Dept. of CSE, UGV 150

(a) Datapath

(b) Position of the source and result registers in the processor pipeline

Figure 8.7. Operand forw arding in a pipelined processor.Md. Masudur Rahman, Dept. of CSE, UGV 151

HANDLING DATA HAZARDS IN SOFTWARE

● Let the compiler detect and handle the
hazard:

I1: Mul R2, R3, R4

NOP

NOP

I2: Add R5, R4, R6

● The compiler can reorder the instructions to
perform some useful work during the NOP
slots.

Md. Masudur Rahman, Dept. of CSE, UGV 152

SIDE EFFECTS

●

●

The previous example is explicit and easily detected.

Sometimes an instruction changes the contents of a register
other than the one named as the destination.

When a location other than one explicitly named in an instruction
as a destination operand is affected, the instruction is said to
have a side effect. (Example?)

Example: conditional code flags:

Add R1, R3

AddWithCarry R2, R4

Instructions designed for execution on pipelined hardware should
have few side effects.

●

●

●

Md. Masudur Rahman, Dept. of CSE, UGV 153

WEEK 11
SLIDES 154-163

Md. Masudur Rahman, Dept. of CSE, UGV 154

INSTRUCTION HAZARDS

Md. Masudur Rahman, Dept. of CSE, UGV 155

OVERVIEW

● Whenever the stream of instructions

supplied by the instruction fetch unit is

interrupted, the pipeline stalls.

● Cache miss

● Branch

Md. Masudur Rahman, Dept. of CSE, UGV 156

UNCONDITIONAL BRANCHES

F2I2 (Branch)

I3

Ik

E2

F3

Fk Ek

Fk+1 Ek+1Ik+1

Instruction

I1

Figure 8.8. An idle cycle caused by a branch instruction.

Execution unit idl

1 2 3 4 5Clock cycle

Time

F1 E1

6

X

Md. Masudur Rahman, Dept. of CSE, UGV 157

Clock cycle 1 2 3 4 5 6 7

Time

8

I1
F1 D1 E1 W1

I2 (Branch) F2 D2 E2

I3
F3 D3 X

I4 F4 X

Ik Fk Dk Ek Wk

Ik+1 Fk+1 Dk+1 Ek+1

BRANCH TIMING

Figure 8.9. Branch timing.

F1 D1 E1 W1

I2 (Branch)

I1

1 2 3 4 5 6 7Clock cycle

F2 D2

F3 X

Fk Dk Ek Wk

Fk+1 Dk+1 Ek+1

I3

Ik

Ik+1

(b) Branch address computed in Decode stage

(a) Branch address computed in Execute stage

Time

- Branch penalty

- Reducing the penalty

Md. Masudur Rahman, Dept. of CSE, UGV 158

INSTRUCTION QUEUE AND PREFETCHING

Instruction fetch unit

Instruction queue

F : Fetch
instruction

E : Execute
instruction

W : Write
results

D : Dispatch/
Decode
unit

Figure 8.10. Use of an instruction queue in the hardware organization of Figure 8.2b.

Md. Masudur Rahman, Dept. of CSE, UGV 159

SUPERSCALAR OPERATION

Md. Masudur Rahman, Dept. of CSE, UGV 160

OVERVIEW

● The maximum throughput of a pipelined processor is one instruction per clock cycle.

● If we equip the processor with multiple processing units to handle several instructions in
parallel in each processing stage, several instructions start execution in the same clock cycle
– multiple-issue.

● Processors are capable of achieving an instruction execution throughput of more than one
instruction per cycle – superscalar processors.

● Multiple-issue requires a wider path to the cache and multiple execution units.

Md. Masudur Rahman, Dept. of CSE, UGV 161

SUPERSCALAR

W : Write
results

Dispatch
unit

Instruction queue

Floating
point
unit

Integer
unit

Figure 8.19. A processor with two execution units.

F : Instruction
fetch unit

Md. Masudur Rahman, Dept. of CSE, UGV 162

SIX STAGE OF INSTRUCTION PIPELINING

Fetch Instruction(FI)

Read the next expec ted instruct ion into a buf fer

Decode Instruction(DI)

Determine the opcode a n d the operand speci f iers .

Calculate Operands(CO)

Calcu la te the e f f ec t i ve addres s of e a c h source operand .

Fetch Operands(FO)

Fetch e a c h operand from memory . Operands in

reg isters n e e d not b e fe tched .

Execute Instruction(EI)

Perform the ind i ca ted operat ion a n d store the result

Write Operand(WO)

Store the result in memory .

Md. Masudur Rahman, Dept. of CSE, UGV 163

WEEK 12
SLIDES 164-173

Md. Masudur Rahman, Dept. of CSE, UGV 164

PARALLEL PROGRAMMING MODELS

Md. Masudur Rahman, Dept. of CSE, UGV 165

INTRODUCTION

collection of program abstractions providing a

simplified and transparent view of the computer

hardware/software system to the programmer

designed for multiprocessors, multicomputer or

vector/SIMD computers

Five models:

 Shared-Variable Model

 Message-Passing Model

 Data-Parallel Model

 Object-oriented Model

 Functional and Logic Models
Md. Masudur Rahman, Dept. of CSE, UGV 166

SHARED-VARIABLE MODEL
 Tolimit the scope and rights, theprocess

address space may be shared or restricted.

Mechanisms for IPC:

1. IPC using shared variable:

2. IPC using message passing:

Shared Variables in a

common memory

Process
A

Process B

Process C

Process D Process E

Md. Masudur Rahman, Dept. of CSE, UGV 167

FOLLOWINGARE SOME ISSUES OF SHARED-VARIABLE MODEL:

 Shared-Variable communication:

 Critical Section(CS):

 code segment accessing shared variables.

 Requirements are –

 Mutual exclusion

 No deadlock in waiting

 Non preemption

 Eventual entry

 Protected Access: based on CS value

 Multiprogramming

 Multiprocessing – two types:

 MIMD mode

 MPMD mode

 Multitasking

 MultithreadingMd. Masudur Rahman, Dept. of CSE, UGV 168



 Partitioning and Replication:

 Program partitioning is a technique for decomposing a large

program and data set into many small pieces for parallel

execution by multiple processors.

Program replication is referred to duplication of the same

program code for parallel execution on multiple processor over

different data sets.

 Scheduling and Synchronization:



 Scheduling of divided program modules on parallel

processor

Twotypes are :

 Static scheduling

 Dynamic scheduling

 Cache Coherence and Protection:

If the value is returned on a read instruction is always the value

written by the latest write instruction on the same memory

location is called coherent.
Md. Masudur Rahman, Dept. of CSE, UGV 169

MESSAGE-PASSING MODEL

Synchronous Message Passing –

 It is must synchronize the sender process andthe

receiver process in time and space

Asynchronous Message Passing –

 I t does not require message sending and

receiving be synchronized in time and space

Non blocking can beachieved

Distributing the computations:

Subprogram level is handled rather than at the

instructional or fine grain process level in a tightly

coupled multiprocessor
Md. Masudur Rahman, Dept. of CSE, UGV 170

DATA-PARALLEL MODEL
 I t is easier to write and to debug because

parallelism is explicitly handled by hardware

synchronization and flow control.

 I t requires the use of pre-distributed data sets

Synchronization is done at compile timerather

than run time.

 t h e following are some issuedhandled

Data Parallelism-

Array Language Extensions

Compiler support

Md. Masudur Rahman, Dept. of CSE, UGV 171

OBJECT-ORIENTED MODEL

• There is increased use of interacting processes by

• individual users

• Workstation networks have become a cost-effective mechanism

• Multiprocessor technology in several variants has

• advanced to the point of providing supercomputing power

 Concurrent OOP – 3 application demands







 An actor model







It is presented as one framework for COOP

They are self-contained , interactive, independent

components of a computing system.

Basic primitives are :create to , send to, become

 Parallelism in COOP:

 3 patterns- 1. pipeline concurrency 2.divide and conquer

currency 3.cooperative problem solving

Md. Masudur Rahman, Dept. of CSE, UGV 172

FUNCTIONAL AND LOGIC MODELS

Two types of language oriented programming

models are

Functional programming model

 It emphasizes functionality of a program

 No concepts of storage, assignment and branching

 All single-assignment and dataflow languages are

functional in nature

 Some e.g. are Lisp, SISAL and strand 88

Logic programming model

 Based on logic ,logic programming that suitable fordealing

with large database.

 Some e.g. are





concurrent Prolog -

Concurrent ParlogMd. Masudur Rahman, Dept. of CSE, UGV 173

WEEK 13
SLIDES 174-183

Md. Masudur Rahman, Dept. of CSE, UGV 174

DISTRIBUTING PROCESSING

Md. Masudur Rahman, Dept. of CSE, UGV 175

OUTLINE

 Distributed Processing

 Distributed System

 Architecture

 Form of D.P

 Techniques

 Challenges

 Advantage/Disadvantage

Md. Masudur Rahman, Dept. of CSE, UGV 176

What is Distributed Processing

 Distributed Processing is a technique of distributing the information

over a number of devices.

 The devices may be computers or data terminals with some level of

intelligence.

 The devices are interconnected with communication facilities.

Md. Masudur Rahman, Dept. of CSE, UGV 177

What is Distributed System

 A distributed system is one in which components
located at networked computers communicate and
coordinate their actions only by passing messages.

 Examples

 The internet

 An intranet which is a portion of the internet managed by
an organization

Md. Masudur Rahman, Dept. of CSE, UGV 178

Architecture

 Software layers

 System architectures

 Interfaces and objects

 Design requirements for distributed architectures

Md. Masudur Rahman, Dept. of CSE, UGV 179

Software layers

 Applications, services

 Middleware

 Operating system

 Computer and network hardware

Md. Masudur Rahman, Dept. of CSE, UGV 180

System architectures

 Client-server model

 Services provided by multiple servers

 Proxy srvers and caches

 Peer processes

Md. Masudur Rahman, Dept. of CSE, UGV 181

Design requirements for distributed architectures

 Performance issues

 Use of caching and replication

 Dependability issues

Md. Masudur Rahman, Dept. of CSE, UGV 182

Design requirements for distributed architectures

 Performance issues
o Responsiveness

o Balancing computer loads

o Quality of services

 Caching and replication
o The performance issues often appear to be major obstacles to the successful

deployment of DS, but much progress has been made in the design of systems that

overcome them by the use of data replication and caching.

 Dependability issues
o Correctness

o Security

o Fault tolerance

Md. Masudur Rahman, Dept. of CSE, UGV 183

WEEK 14
SLIDES 184-200

Md. Masudur Rahman, Dept. of CSE, UGV 184

Form of Distributed Processing

 Distributed Applications

 Distributed Devices

 Network Management and Control

 Distributed Data

Md. Masudur Rahman, Dept. of CSE, UGV 185

Distributed Applications

 One application splits up into components that are
dispersed among a number of machines

 One application replicated on a number of machines

 A number of different applications distributed among a
number of machines

 Can be characterized by vertical or horizontal
partitioning

Md. Masudur Rahman, Dept. of CSE, UGV 186

Distributed Devices

 Support a distributed set of devices that can be
controlled by processors, e.g. ATMs or laboratory
interface equipments

 Distribution of processing technology to various
locations of the manufacturing process in factory
automation

Md. Masudur Rahman, Dept. of CSE, UGV 187

Techniques of Distributed Processing

 Centralized

 Decentralized

 Parallel

 Open Distributed Processing

 Clustering

Md. Masudur Rahman, Dept. of CSE, UGV 188

Centralized

 Centralized Processing is done at a central location,

using terminals that are attached to a central computer

 The central computer performs the computing functions and

controls the remote terminals. This type of system relies totally

on the central computer.

Md. Masudur Rahman, Dept. of CSE, UGV 189

Centralized

 Example: Client/server is the most common example of

centralized processing, where server is controlling all the

activities on the network.

Md. Masudur Rahman, Dept. of CSE, UGV 190

Decentralized

 Computer systems in different locations. Although data may be

transmitted between the computers periodically

 Example: Yahoo server is the example of the decartelized

processing. On each login it connects you to a different server .

Md. Masudur Rahman, Dept. of CSE, UGV 191

Parallel Processing

 Parallel processing is the simultaneous processing of the same

task on two or more microprocessors in order to obtain faster

results

 Multiple processor

 Multiple computer

 Shared memory resources

Md. Masudur Rahman, Dept. of CSE, UGV 192

Open Distributed Processing

 ODP is a reference model in computer science, which provides a

coordinating framework for the standardization

of open distributed processing (ODP).

 It supports distribution, interworking, platform and technology

independence, and portability, together with an enterprise

architecture framework for the specification of ODP systems.

Md. Masudur Rahman, Dept. of CSE, UGV 193

Clustering

 A cluster is a group of individual computer systems that can be

made to appear as one computer system.

 Clustering is just one form of parallel computing.

 key points that distinguishes clustering from other is the ability to

view the cluster as either a single entity or a collection of stand-

alone systems

 For example: a cluster of web servers can appear as one large

web server, but at the same time, individual systems within the

cluster can be accessed as individual systems,

Md. Masudur Rahman, Dept. of CSE, UGV 194

Clustering

 Example:

Internet is an example of clustering, where different server are
working but they look like a single server.

Md. Masudur Rahman, Dept. of CSE, UGV 195

Challenges

 Heterogeneity

 Security

 Scalability

 Failure handling

 Concurrency

Md. Masudur Rahman, Dept. of CSE, UGV 196

Advantages

 Quicker response time

 By locating processing power close to user, response time is typically

improved. This means that the system responds rapidly to commands

entered by users.

 Lower costs

 Long-distance communication costs are declining at a slower rate than the

cost of computer power

 Distributed processing can reduce the volume of data that must be

transmitted over long-distances and thereby reduce long-distance costs.

 Improved data integrity

 High degrees of accuracy and correctness may be achieved by giving users

control over data entry and storage.

Md. Masudur Rahman, Dept. of CSE, UGV 197

Advantages

 Reduced host processor costs

 The productive life of a costly mainframe can be extended by off-loading

some its processing tasks to other, less expensive machines

 Resource sharing

 One of the main advantages of developing microcomputer networks is

because they make it possible to share expensive resources such as high-

speed, color laser printers, fast data storage devices, and high-priced

software packages.

Md. Masudur Rahman, Dept. of CSE, UGV 198

Disadvantage

 Complexities
 A lot of extra programming is required to set up a distributed system

 Network failure

 Since distributed system will be connected through network and in case of
network failure non of the systems will work

 Security

 The information need to be passed between the network. And it can be
tracked and can be used for illegal purpose.

 Costly software

 Not all situations are suitable for distributed computing

Md. Masudur Rahman, Dept. of CSE, UGV 199

Md. Masudur Rahman, Dept. of CSE, UGV 200

WEEK 15
SLIDES 201-217

Md. Masudur Rahman, Dept. of CSE, UGV 201

DISTRIBUTED DATABASE

202

OUTLINE

⚫ Concept

⚫ Distributed Database Types

– Homogeneous

– Heterogeneous

⚫ Distributed Database Design

– Data Fragmentation

– Data Allocation

– Data Replication

203

CONCEPT

•A distributed database (DDB) is a collection of multiple,
logically interrelated databases distributed over a computer
network.

•A distributed database management system (D–DBMS) is the
software that manages the DDB and provides an access
mechanism that makes this distribution transparent to the
users.

•Distributed database system (DDBS) = DDB + D–DBMS

204

CONCEPT

⚫ Collection of logically-related shared data.

⚫ Data split into fragments.

⚫ Fragments may be replicated.

⚫ Fragments/replicas allocated to sites.

⚫ Sites linked by a communications network.

⚫ Data at each site is under control of a DBMS.

⚫ DBMSs handle local applications autonomously.

⚫ Each DBMS participates in at least one global application.

205

FUNCTIONALITY

⚫ Security

⚫ Keeping track of data

⚫ Replicated data management

⚫ System catalog management

⚫ Distributed transaction management

⚫ Distributed database recovery

206

DISTRIBUTED DBMS

207

COMPONENT ARCHITECTURE FOR A D-
DBMS

208

ADVANTAGES OF D-DBMS

⚫ Organizational Structure

⚫ Share-ability and Local Autonomy

⚫ Improved Availability

⚫ Improved Reliability

⚫ Improved Performance

⚫ Economics

⚫ Modular Growth

209

DISADVANTAGES OF D-DBMS

⚫ Complexity

⚫ Cost

⚫ Security

⚫ Integrity Control More Difficult

⚫ Lack of Standards

⚫ Lack of Experience

⚫ Database Design More Complex

210

TYPES OF D-DBMS

⚫ Homogeneous D-DBMS

⚫ Heterogeneous D-DBMS

211

HOMOGENEOUS D-DBMS

⚫ All sites have identical software and are aware of each other
and agree to cooperate in processing user requests.

⚫ Much easier to design and manage

⚫ The operating system used, at each location must be same or
compatible.

⚫ The database application (or DBMS) used at each location
must be same or compatible.

⚫ It appears to user as a single system

⚫ All access is through one, global schema

⚫ The global schema is the union of all the local schema

212

HOMOGENEOUS DATABASE

213

214

HOMOGENEOUS DISTRIBUTED DATABASE EXAMPLE

⚫ A distributed system connects three databases: hq, mfg, and sales
⚫ An application can simultaneously access or modify the data in several

databases in a single distributed environment.

215

HETEROGENEOUS D-DBMS
⚫Different sites may use different schema and software.

⚫Different nodes may have different hardware & software and data structures at
various nodes or locations are also incompatible.

⚫Different computers and operating systems, database applications or data models
may be used at each of the locations.

⚫Difficult to manage and design.

⚫Local access is done using the local DBMS and schema

⚫Remote access is done using the global schema

216

TYPICAL HETEROGENEOUS ENVIRONMENT

217

WEEK 16
SLIDES 218-235

218

DISTRIBUTED DATABASE DESIGN

⚫ Three key issues:

⚫ Data Fragmentation

• Relation may be divided into a number of sub relations, which are then

distributed.

• Breaking up the database into logical units called fragments and

assigned for storage at various sites.

⚫ Data Allocation

• The process of assigning a particular fragment to a particular site in a

distributed system.

⚫ Data Replication

• Copy of fragment may be maintained at several sites.

219

DISTRIBUTED DATABASE DESIGN

⚫ Data Fragmentation

⚫ data can be distributed by storing individual
tables at different sites

⚫ data can also be distributed by decomposing a
table and storing portions at different sites –
called Fragmentation

⚫ fragmentation can be horizontal or vertical

220

HORIZONTAL AND VERTICAL
FRAGMENTATION

221

WHY USE FRAGMENTATION?

⚫ Usage - in general applications use views so it’s
appropriate to work with subsets

⚫ Efficiency - data stored close to where it is most
frequently used

⚫ Parallelism - a transaction can divided into several sub-
queries to increase degree of concurrency

⚫ Security - data more secure - only stored where it is
needed

Disadvantages:

Performance - may be slower

Integrity - more difficult

222

DISTRIBUTED DATABASE DESIGN

⚫ Horizontal Fragmentation

⚫ Each fragment, Ti , of table T contains a subset of
the rows

⚫ Each tuple of T is assigned to one or more
fragments

⚫ Horizontal fragmentation is lossless

⚫ A selection condition may be composed of several
conditions connected by AND or OR

⚫ Derived horizontal fragmentation: It is the
partitioning of a primary relation to other secondary
relations which are related with Foreign keys

223

HORIZONTAL FRAGMENTATION EXAMPLE

⚫ A bank account schema has a relation

 Account-schema = (branch-name, account-number, balance).

⚫ It fragments the relation by location and stores each fragment
locally: rows with branch-name = `Hillside` are stored in the
Hillside in a fragment

224

HORIZONTAL FRAGMENTATION EXAMPLE

225

DISTRIBUTED DATABASE DESIGN

⚫ Vertical Fragmentation

⚫ It is a subset of a relation which is created by a subset of columns.

Thus a vertical fragment of a relation will contain values of selected

columns. There is no selection condition used in vertical

fragmentation.

⚫ Consider the customer relation. A vertical fragment can be

created by keeping the values of Name, Area, Sex.

⚫ Because there is no condition for creating a vertical fragment, each

fragment must include the primary key attribute of the parent

relation customer. In this way all vertical fragments of a relation are

connected.

226

VERTICAL FRAGMENTATION EXAMPLE

227

DISTRIBUTED DATABASE DESIGN

⚫ Data Allocation

⚫ Four alternative strategies regarding placement of data

⚫ Centralized

⚫ Partitioned (or Fragmented)

⚫ Complete Replication

⚫ Selective Replication

228

DATA ALLOCATION

⚫ Centralized

⚫ Consists of single database and DBMS stored at one site with users distributed

across the network.

⚫ Partitioned

⚫ Database partitioned into disjoint fragments, each fragment assigned to one site.

⚫ Complete Replication

⚫ Consists of maintaining complete copy of database at each site.

⚫ Selective Replication

⚫ Combination of partitioning, replication, and centralization.

229

DISTRIBUTED DATABASE DESIGN

⚫ Data Replication

⚫ System maintains multiple copies of data, stored
in different sites, for faster retrieval and fault
tolerance.

230

ISSUES OF REPLICATION

⚫ Data timeliness – high tolerance for out-of-date data may
be required

⚫ DBMS capabilities – if DBMS cannot support multi-node
queries, replication may be necessary

⚫ Performance implications – refreshing may cause
performance problems for busy nodes

⚫ Network heterogeneity – complicates replication

⚫ Network communication capabilities – complete
refreshes place heavy demand on telecommunications

231

ADVANTAGES OF REPLICATION

⚫ Availability: failure of site containing relation r does not
result in unavailability of r is replicas exist.

⚫ Parallelism: queries on r may be processed by several
nodes in parallel.

⚫ Reduced data transfer: relation r is available locally at each
site containing a replica of r.

232

DISADVANTAGES OF REPLICATION

• Increased cost of updates: each replica of relation r must be
updated.

• Increased complexity of concurrency control: concurrent
updates to distinct replicas may lead to inconsistent data
unless special concurrency control mechanisms are
implemented.

• One solution: choose one copy as primary copy and apply
concurrency control operations on primary copy.

233

234

235

WEEK 17
SLIDES 236-263

236

Parallel Computing and

Programming Environments

▪ MapReduce

▪ Hadoop

▪ Amazon Web Services

237

What is MapReduce?

⚫ Simple data-parallel programming model

⚫ For large-scale data processing

➢ Exploits large set of commodity computers

➢ Executes process in distributed manner

➢ Offers high availability

⚫ Pioneered by Google

➢ Processes 20 petabytes of data per day

⚫ Popularized by open-source Hadoop project

➢ Used at Yahoo!, Facebook, Amazon, …

238

What is MapReduce used for?
⚫ At Google:

➢ Index construction for Google Search

➢ Article clustering for Google News

➢ Statistical machine translation

⚫ At Yahoo!:

➢ “Web map” powering Yahoo! Search

➢ Spam detection for Yahoo! Mail

⚫ At Facebook:

➢ Data mining

➢ Ad optimization

➢ Spam detection

239

Many tasks composed of processing lots of data to produce

lots of other data

➢MapReduce provides

➢ User-defined functions

➢ Automatic parallelization and distribution

➢ Fault-tolerance

➢ I/O scheduling

➢ Status and monitoring

oIn research:

o Astronomical image analysis (Washington)

o Bioinformatics (Maryland)

o Analyzing Wikipedia conflicts (PARC)

o Natural language processing (CMU)

o Particle physics (Nebraska)

o Ocean climate simulation (Washington)

What is MapReduce used for?

240

Distributed Grep

Very

big

data

Split data

Split data

Split data

Split data

grep

grep

grep

grep

matches

matches

matches

matches

cat
All

matches

grep is a command-line utility for searching plain-text data sets for lines

matching a regular expression.

cat is a standard Unix utility that concatenates and lists files

241

Map+Reduce

⚫ Map:

➢ Accepts input
key/value pair

➢ Emits intermediate
key/value pair

⚫ Reduce :

➢ Accepts intermediate
key/value* pair

➢ Emits output
key/value pair

Very

big

data

Result
M

A

P

R

E

D

U

C

E

Partitioning

Function

242

Architecture Overview

Job tracker

Task tracker Task tracker Task tracker

Master node

Slave node 1 Slave node 2 Slave node N

Workers

user

Workers Workers

243

Functions in the Model

⚫ Map

➢ Process a key/value pair to generate intermediate

key/value pairs

⚫ Reduce

➢ Merge all intermediate values associated with the same

key

⚫ Partition

➢ By default : hash(key) mod R

➢ Well balanced

244

Programming Concept

⚫ Map

➢ Perform a function on individual values in a data set to

create a new list of values

➢ Example: square x = x * x

 map square [1,2,3,4,5]

 returns [1,4,9,16,25]

⚫ Reduce

➢ Combine values in a data set to create a new value

➢ Example: sum = (each elem in arr, total +=)

 reduce [1,2,3,4,5]

 returns 15 (the sum of the elements)

245

Programming Structure

246

A Word Counting Example on <Key,

Count> Distribution

247

MapReduce : Operation Steps
When the user program calls the MapReduce function, the following

sequence of actions occurs :

1) The MapReduce library in the user program first splits the input
files into M pieces – 16 megabytes to 64 megabytes (MB) per
piece. It then starts up many copies of program on a cluster of
machines.

2) One of the copies of program is master. The rest are workers that
are assigned work by the master.

3) A worker who is assigned a map task :

▪ reads the contents of the corresponding input split

▪ parses key/value pairs out of the input data and passes each pair

to the user - defined Map function.

 The intermediate key/value pairs produced by the Map function are

buffered in memory.

248

4) The buffered pairs are written to local disk, partitioned into R regions by the

partitioning function.

 The location of these buffered pairs on the local disk are passed back to the

master, who forwards these locations to the reduce workers.

5) When a reduce worker is notified by the master about these locations, it reads

the buffered data from the local disks of the map workers.

 When a reduce worker has read all intermediate data, it sorts it by the

intermediate keys so that all occurrences of the same key are grouped together.

6) The reduce worker iterates over the sorted intermediate data and for each

unique intermediate key, it passes the key and the corresponding set of

intermediate values to the user’s Reduce function.

 The output of the Reduce function is appended to a final output file.

7) When all map tasks and reduce tasks have been completed, the master wakes up

the user program.

 At this point, MapReduce call in the user program returns back to the user code.

 After successful completion, output of the mapreduce execution is available in

the R output files.

MapReduce : Operation Steps

249

Locality Issue

⚫ Master scheduling policy

➢ Asks GFS for locations of replicas of input file blocks

➢ Map tasks typically split into 64MB (== GFS block size)

➢ Map tasks scheduled so GFS input block replica are on
same machine or same rack

⚫ Effect

➢ Thousands of machines read input at local disk speed

➢ Without this, rack switches limit read rate

250

Fault Tolerance

⚫ Reactive way

➢ Worker failure

▪ Heartbeat, Workers are periodically pinged by master

▪ NO response = failed worker

▪ If the processor of a worker fails, the tasks of that worker are
reassigned to another worker.

➢ Master failure

▪ Master writes periodic checkpoints

▪ Another master can be started from the last checkpointed state

▪ If eventually the master dies, the job will be aborted

251

Fault Tolerance

⚫ Proactive way (Redundant Execution)

➢ The problem of “stragglers” (slow workers)

▪ Other jobs consuming resources on machine

▪ Bad disks with soft errors transfer data very slowly

▪ Weird things: processor caches disabled (!!)

➢ When computation almost done, reschedule in-progress
tasks

➢ Whenever either the primary or the backup executions
finishes, mark it as completed

252

Input error: bad records

Map/Reduce functions sometimes fail for particular

inputs

Best solution is to debug & fix, but not always possible

On segment fault

Send UDP packet to master from signal handler

Include sequence number of record being processed

Skip bad records

If master sees two failures for same record, next

worker is told to skip the record

Fault Tolerance

253

Hadoop : software platform originally developed by Yahoo

enabling users to write and run applications over vast distributed data.

Attractive Features in Hadoop :

 Scalable : can easily scale to store and process petabytes of
 data in the Web space

 Economical : An open-source MapReduce minimizes the
 overheads in task spawning and massive data communication.

 Efficient: Processing data with high-degree of parallelism
 across a large number of commodity nodes

 Reliable : Automatically maintains multiple copies of data to
 facilitate redeployment of computing tasks on failures

254

Typical Hadoop Cluster

Aggregation switch

Rack switch

⚫ 40 nodes/rack, 1000-4000 nodes in cluster

⚫ 1 Gbps bandwidth within rack, 8 Gbps out of rack

⚫ Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

255

Typical Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf

256

Hadoop Components

⚫ Distributed file system (HDFS)

➢ Single namespace for entire cluster

➢ Replicates data 3x for fault-tolerance

⚫ MapReduce framework

➢ Executes user jobs specified as “map” and “reduce”
functions

➢ Manages work distribution & fault-tolerance

257

Hadoop Distributed File System

⚫ Files split into 128MB blocks

⚫ Blocks replicated across several
datanodes (usually 3)

⚫ Single namenode stores metadata
(file names, block locations, etc)

⚫ Optimized for large files, sequential
reads

⚫ Files are append-only

Datanodes

1

2

4

2

1

3

1

4

3

3

2

4

Namenode

1

2

3

4

File1

258

HDFS and MapReduce Architecture

259

Higher-level languages over Hadoop: Pig and Hive

Pig :
⚫ Started at Yahoo! Research

⚫ Runs about 30% of Yahoo!’s jobs

⚫ Features:

➢ Expresses sequences of MapReduce jobs

➢ Data model: nested “bags” of items

➢ Provides relational (SQL) operators (JOIN, GROUP BY,
etc)

➢ Easy to plug in Java functions

➢ Pig Pen development environment for Eclipse

260

Hive

⚫ Developed at Facebook

⚫ Used for majority of Facebook jobs

⚫ “Relational database” built on Hadoop

➢ Maintains list of table schemas

➢ SQL-like query language (HQL)

➢ Can call Hadoop Streaming scripts from HQL

➢ Supports table partitioning, clustering, complex
data types, some optimizations

261

Amazon Elastic MapReduce

⚫ Provides a web-based interface and command-line
tools for running Hadoop jobs on Amazon EC2

⚫ Data stored in Amazon S3

⚫ Monitors job and shuts down machines after use

⚫ Small extra charge on top of EC2 pricing

⚫ If you want more control over how you Hadoop runs,
you can launch a Hadoop cluster on EC2 manually
using the scripts in src/contrib/ec2

262

Conclusions

⚫ MapReduce programming model hides the complexity of work
distribution and fault tolerance

⚫ Principal design philosophies:

➢ Make it scalable, so you can throw hardware at problems

➢ Make it cheap, lowering hardware, programming and admin costs

⚫ MapReduce is not suitable for all problems, but when it works,
it may save you quite a bit of time

⚫ Cloud computing makes it straightforward to start using
Hadoop (or other parallel software) at scale

263

	Slide 1: Parallel & Distributed Processing CSE-313
	Slide 2: Parallel & Distributed Processing
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan
	Slide 6: Week 1 Slides 6-25
	Slide 7: Parallel Processing
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Week 2 Slides 26-37
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Week 3 Slides 38-50
	Slide 39: Parallel Computer Model
	Slide 40: Outline
	Slide 41: Description of Vector Processors
	Slide 42: Advantages of Vector Processors
	Slide 43: Architecture of a Vector Supercomputers
	Slide 44: Architecture of a Vector Supercomputers(cont)
	Slide 45: Vector Processor Architectures
	Slide 46: Vector Processor Architectures (cont)
	Slide 47: Components of Vector Processors
	Slide 48: SIMD Supercomputers
	Slide 49: SIMD Machine Model
	Slide 50: Questions?
	Slide 51: Week 4 Slides 51-65
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Week 5 Slides 66-77
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Week 6 Slides 78-98
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: Scheduling (Cont)
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Week 7 Slides 99-107
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Week 8 Slides 108-127
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128: Week 9 Slides 128-145
	Slide 129: Pipelining
	Slide 130: Overview
	Slide 131: Basic Concepts
	Slide 132: Making the Execution of Programs Faster
	Slide 133: Traditional Pipeline Concept
	Slide 134: Traditional Pipeline Concept
	Slide 135: Traditional Pipeline Concept
	Slide 136: Traditional Pipeline Concept
	Slide 137: Use the Idea of Pipelining in a Computer
	Slide 138: Use the Idea of Pipelining in a Computer
	Slide 139: Role of Cache Memory
	Slide 140: Pipeline Performance
	Slide 141: Pipeline Performance
	Slide 142: Pipeline Performance
	Slide 143: Pipeline Performance
	Slide 144: Pipeline Performance
	Slide 145: Pipeline Performance
	Slide 146: Week 10 Slides 146-153
	Slide 147: Data Hazards
	Slide 148: Data Hazards
	Slide 149: Data Hazards
	Slide 150: Operand Forwarding
	Slide 151
	Slide 152: Handling Data Hazards in Software
	Slide 153: Side Effects
	Slide 154: Week 11 Slides 154-163
	Slide 155: Instruction Hazards
	Slide 156: Overview
	Slide 157: Unconditional Branches
	Slide 158: Branch Timing
	Slide 159: Instruction Queue and Prefetching
	Slide 160: Superscalar Operation
	Slide 161: Overview
	Slide 162: Superscalar
	Slide 163: SIX STAGE OF INSTRUCTION PIPELINING
	Slide 164: Week 12 Slides 164-173
	Slide 165: Parallel Programming Models
	Slide 166: Introduction
	Slide 167: Shared-Variable Model
	Slide 168: Following are some issues of Shared-variable Model:
	Slide 169
	Slide 170: Message-Passing Model
	Slide 171: Data-Parallel Model
	Slide 172: Object-Oriented Model
	Slide 173: Functional and Logic Models
	Slide 174: Week 13 Slides 174-183
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Week 14 Slides 184-200
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201: Week 15 Slides 201-217
	Slide 202: Distributed Database
	Slide 203: Outline
	Slide 204: Concept
	Slide 205: Concept
	Slide 206: Functionality
	Slide 207: Distributed DBMS
	Slide 208: Component Architecture for a D-DBMS
	Slide 209: Advantages of D-DBMS
	Slide 210: Disadvantages of D-DBMS
	Slide 211: Types of D-DBMS
	Slide 212: Homogeneous D-DBMS
	Slide 213: Homogeneous Database
	Slide 214
	Slide 215: Homogeneous Distributed Database Example
	Slide 216: Heterogeneous D-DBMS
	Slide 217: Typical Heterogeneous Environment
	Slide 218: Week 16 Slides 218-235
	Slide 219: Distributed Database Design
	Slide 220: Distributed Database Design
	Slide 221: Horizontal and Vertical Fragmentation
	Slide 222: Why use Fragmentation?
	Slide 223: Distributed Database Design
	Slide 224: Horizontal Fragmentation Example
	Slide 225: Horizontal Fragmentation Example
	Slide 226: Distributed Database Design
	Slide 227: Vertical Fragmentation Example
	Slide 228: Distributed Database Design
	Slide 229: Data Allocation
	Slide 230: Distributed Database Design
	Slide 231: Issues of Replication
	Slide 232: Advantages of Replication
	Slide 233: Disadvantages of Replication
	Slide 234
	Slide 235
	Slide 236: Week 17 Slides 236-263
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263

